
Security? Why bother?

Security? Why bother?

• Who am I?

• Why am I here?

Security? Why bother?

• Consequences of an insecure website

• loss of business

• Destroy customer confidence and brand

• Legal liability

• Financial loss

• Costs of incident handling

Security? Why bother?

• WhiteHat security research - all data
collected through vulnerability assessment of
the largest and most popular websites in the
retail, financial, insurance, education and
social networks.

• Study uses WASC threat classification

Security? Why bother? Because
people are evil!

• Authentication

• Brute Force

• Insufficient Authentication

• Authorization

• Insufficient Authorization

• Client-side attacks

• Cross site scripting - XSS

• Cross site request forgery - CSRF

Security? Why bother? Because
people are evil!

• Command Execution

• SQL Injection

• Information Disclosure

• Information Leakage

• Directory Indexing

• Predictable Resource Location

Security? Why bother? Because
people are evil!

Security? Why bother?

7 out of 10 websites have
serious vulnerabilities

• What can you do?

• Turn off your server? No, but you can place
as much obstacles as possible.

• Asset tracking - you cannot secure what you
do not know you own. Install the update
status module.

• Vulnerability assessment (measure security) -
Use tools such as tamper data, webscarab or
any interception proxy, nikto, port scanners.

Security? Why bother? Because
people are evil!

• Read the “writing secure code” handbook
(http://drupal.org/writing-secure-code). ask questions in the
forum or #drupal IRC channel

• Local OWASP chapters, OWASP mailing list,
bugtrack, gnucitzen.org, wasc
webappsec.org, planet-websecurity.org

Security? Why bother? Because
people are evil!

If you are a developer

Drupal Anti-SQL
injection

• NO: db_query(“SELECT * FROM {table}
WHERE someval = ‘$user_input’”);

• YES: db_query(“SELECT * FROM {table}
WHERE someval = ‘%s’”, $user_input);

Drupal Anti-XSS
t()

t('I escape %user_data', array('%user_data' => $data));
 I escape user_data (safe)

t('I escape @user_data', array('@user_data' => $data));
 I escape user_data (safe)

t('I do not escape !user_data', array('!user_data' => $data));
 XSS vulnerability

check_plain - to be used when inserting plain text in HTML

check_markup - to be used when inserting rich text in HTML

filter_xss - to remove all but whitelisted tags from text inserted in HTML
filter_xss_admin - shortcut to filter_xss with a permissive tag list, used to output admin
defined texts.

Drupal’s FAPI

• Valid choice checker

• Protects against Cross site request forgeries

