A Guide To

Drupal SimpleTests

Drupal.org

Benefits of unit testing

 Ensure that modules are tested
* Provide an easy method for validating a patch

- Tests can be run on the patch to confirm that
everything still works

- Prevent catchable mistakes from being committed
* Facilitate change

- By allowing a developer to make sure that changes
to core functionality do not have detrimental effects
on dependent modules

Drupal.org

Benefits of unit testing

* Debugging

- When issues arise they can be much more easily
located with aid of SimpleTests

- The effect of changes can be more thoroughly
tested

Drupal.org

What Is unit testing?

e Definition

- “...unit testing Is a procedure used to validate that
iIndividual units of source code are working
properly.” —Wikipedia

- “A unit test is a method of testing the correctness of
a particular module of source code.” —savaworkshop

Drupal.org

What is SimpleTest?

 SimpleTest is an open source PHP framework
- Allows for unit testing to be done quickly and easily
 The framework provides:

Feature

. Abstract class that automatically
calls test functions

. Common testing functions

. Internal web browser to imitate
user requests

. Feedback system that displays the
test results

Benefit

. Makes it easy to separate tests and
have them executed

. Helps facilitate quick test
development

. Necessary to test web interface

. Allows the developer to easily
distinguish what 1s wrong

Drupal.org

Drupal SimpleTesting

* Integrated SimpleTest environment

- Easy to configure SimpleTest module
- Administration page to run and review test results

- Convenience functions for common Drupal testing
tasks

- Specialized internal browser

* Format urls for Drupal system

» Wraps functions to keep them consistent with Drupal
standards

Drupal.org

Drupal SimpleTesting

 SimpleTest Automator module provides a quick
and easy way to create SimpleTests for Drupal

— Configure user and permissions
- Login that user
- Record actions performed through Drupal interface

— Clean up

 The code can then be cleaned up and with a few
additions can be completed

*http://drupal.org/project/simpletest _automator

Drupal.org

Interface

e Simple interface

— Select tests

Blog API Tests

- Run

I select all tests in this group

B » Tests are categorized
to make them easy to

Fun tests

find
€ Run all tests (WARNING, this may take a long time) I n
& Run selected tests

Begin |

Drupal.org

Test Results

 Easy to read

- Green—passed
- Red—failed

Fost successfully modified, at
[fhomefjimmy/fpublic_html/drupal/modules/simpletest/tests/blogapi_module.php line 75]

File successfully uploaded. at
[frhomefjimmy/public_html/drupalfmodules/simpletest/tests/blogapi_module.php line 84]

Uploaded contents verified. at
[fhomefjiimmy/public_html/drupalfmodules/simpletest/tests/blogapi_module.php line 290]

Post categories set, at
[fhomefjiimmy/public_html/drupalfmodules/simpletest/tests/blogapi_module.php line 95]

Category list successfully retreived, at
[fhomefjimmy/fpublic_html/drupal/modules/simpletest/tests/blogapi_module.php line 99]

OK

oK

FaIl

oK

FAIL

Drupal.org

Creating a SimpleTest

Plan out the tasks
to be tested

v

Find related
privileges

Create new Automate? Start automator
test case
v v
Write basic Perform tasks
task tests to be tested
v Y
Clean up x4 - n Clean up

catches errors

Drupal.org

General SimpleTest Flow

Enable modules

\J

Create user

\

Login user

\

Perform task <« |

Repeat for
all tasks

' A

Make assertion

\J

Clean up

Drupal.org

SimpleTest Example

* Any tests that you create need to extend the
DrupalTestCase class

- Your class will then gain all the benefits of the
SimpleTest library

class PresentationModuleTestCase extends DrupalTestlCase

Drupal.org

SimpleTest Info

* All SimpleTests should implement get info()

- This provides information about the test to the
administration interface to help developers
understand what the test will do

function get infoi) {

return arrayi
"name' => t{"'Presentation abilities'),
'desc' == t{'Does a complete test of presentation abilities'),
"group' = t('Presentation Tests'),
¥
1

Drupal.org

SimpleTest Test Function

* Create a function beginning with the word “test”
so that it will be executed as part of the test

function test presentation()

Drupal.org

Enable Modules

e Enable all used modules

- This ensures that the testing environment is
configured for the test to be performed

tthiz-=drupalModuleEnablel "presentation’);

Drupal.org

Create Test User

e Create a user for test

- By creating a user with just the privileges required
to complete the test the privilege system can be
tested as well

- Ensures that the testing environment is not the
problem

fadmin user = fthisz->drupalCreatelserRolePerm{array('administer content types')):

fthis-=drupalLloginUser(fadnin us=r);

Drupal.org

Make POST Request

« POST data can be sent to a page to simulate
user interaction

- Allows user interface to be tested
- Allows modules responding to interface to be tested

fecdit = array();

fedit["'name’] = "John Doe';

fedit["foo"'] = 'bar';

fthi=->drupalPostRequest(‘presentation/test’', fedit, "Save');

Drupal.org

Make Assertion

e Use assertions to check results of actions

- Simplifies code by removing conditional logic
- Provides easy way to display text explaining test

fthis-zassertText(t({"'Saved Changes.'). 'Changes wWere saved successfully.');:

Drupal.org

Complete Example

<fphp
fEoFId:

class PresentationModuleTestCase extends DrupalTestCase {

function get infol) {

return arrayf

"name' => t{'Presentation abilities’),

'desc' == t{'Does a complete test of presentation abilities'),
"group' =:* t{'Presentation Tests'),
13
h

functien test presentation() {
Tthiz-=>drupalModuleEnablei "presentation’):
fadnin user = $thiz->*drupalCreatelserRolePerm{array('administer content types'));:

fthiz-=drupalloginUser(fadnin uzer);

fedit = array();

fedit["name’] = "John Doe";

fedit['"foo'] = '"bar'";

fthi=->drupalPostRequest(' 'presentation/test’', fedit, "Save');

fthiz->assertText(t({'5aved Changes.'), 'Changes were saved successfully.');

Drupal.org

Limitations

* Lacks support for

- JavaScript

* Included script files cannot be checked

* The result of scripts cannot be evaluated since the
internal browser does not support JavaScript

- Cascading Style Sheets

* The visual aspect of the pages cannot be checked

* The style sheets themselves are not accessible by
SimpleTest

Drupal.org

References

 Modules

- Sim P leTe St—http://drupal.org/project/simpletest

- SlmpleTeSt Automator—rhttp:/drupal.org/project/simpletest_automator
 Documentation

- SimpleTeSt—http://simpIetest.org/
— Drupal SimpIETeSt—http://drupal.org/simpletest

e Articles

- http://www.lullabot.com/articles/introduction-unit-testing

- http://www.lullabot.com/articles/drupal-module-developer-guide-simpletest

Drupal.org

e Jimmy Berry

- | created a number of
SimpleTests and was
very impressed with
the framework.

— This presentation
allowed me to compile
my thoughts and
provide an organized
way to share them.

Drupal.org

License

This presentation is © copyright 2008 by the individual contributors and can be used in
accordance with the Creative Commons License, Attribution-ShareAlike 2.0.

Drupal.org

