The New System for Releasing Drupal Contributions
Derek Wright <drupal@dwwright.net> http://drupal.org/user/46549

Problems of the current system

Today, Drupal contributions are numbered
“X.Y.0”, where “X.Y” correspond to a given
version of Drupal’s core APIl. There can be
only one branch of the module compatible with
a given version of core. As developers fix
bugs, new “releases” [sic] are automatically
produced with the same number and name
(only the timestamp on the filename changes).
If a module author wishes to keep the official
“releases” for a given core API stable and only
fix bugs on that branch, their only option for
new features is to use the trunk of the CVS
repository, which forces people to use an
ambiguous cvs version of their module, which
could be intended for any version of Drupal’s
core APIl. Bug reports and documentation
refer to completely ambiguous names that
cannot be reliably recreated, since there are no
CVS tags to recover a specific version number.

Goals of the new system

We need official releases for all Drupal
contributions, not just the core system. These
releases must be intentional, tagged in the
CVS repository, and uniquely identified. There
should be no ambiguity when referring to the
code running on a site, in issues, bugs, tasks,
security alerts, documentation, forum posts, or
in emails.

The other primary goal is to have multiple
branches of development that are compatible
with the same version of Drupal’s core. This
will allow separate stable and development
versions of contributed modules, allowing
developers to add new features without
endangering the stability of the code, which
can be immediately deployed on sites running
a given stable version of core Drupal.

Additionally, the new system will ensure that
no one ever has to run a release from the
TRUNK of the Drupal CVS repository, unless
they plan to develop and test the very latest
code that’s being ported to the next version of
the Drupal core APl. Tremendous confusion
exists because the TRUNK (sometimes called
“HEAD” or just “CVS”) is a moving target, and
the state of the code for a given contributed
module in the TRUNK is usually unknown.

Constraints

Albert Einstein wisely said, “Make everything
as simple as possible, but not simpler.”
Unfortunately, Drupal development happens in
a very complicated context, with rapidly
changing versions of the core API, the
interaction of different modules, the need for
stable and development versions of many
modules, and so on. Balancing the needs of a
simple, usable system with something powerful
enough to solve the problems we currently
face has been a constant challenge. The other
constraint is that the project.module and other
related parts of this system
(project_issue.module, cvs.module, etc.) must
be usable on sites other than drupal.org.

Version numbers

Core version numbers would remain the same:
Major.Minor.Patch. However, contributed
modules would now have numbers of the form:
SuperMajor.SuperMinor-Minor.Patch,
where the SuperMajor.SuperMinor portion
would refer to the version of the core API the
release was compatible with

CVS branches

Core branches would continue to be named as
they always have: DRUPAL-X-Y. The default
stable branch of any contributed module would
be the same, just like now. However, instead
of releases from this branch being called
X.Y.0, the first release would be x.Y-0.0.
For example, the first official stable release of
a module for the Drupal 4.7 APl would be
version 4.7-0.0. Subsequent stable releases
would increment the module’s patch level,
becoming version 4.7-0.1 and so on...

If a project maintainer wishes to provide a
development branch for a given version of the
core API, they would add a branch of the form:
DRUPAL-SuperMaj-SuperMin Minor

For example, the first development branch for
the 4.7 APl would be DRUPAL-4-7_1. Mixing
—and _ in the tag name could potentially lead
to confusion, but CVS tags have a limited set
of allowed characters, and | believe we need a
visual separation between the part of the tag
referring to core and the rest. Calling the
above tag DRUPAL-4-7-1 would look exactly
like the release tag for the 4.7.1 version of
Drupal core. This is unacceptable.



What’s wrong with “DRUPAL-4-7-DEVEL”?
Some modules will require multiple stable and
development versions for the same version of
core, especially modules that provide an API
which other modules depend on. Furthermore,
branch names should match version numbers
as closely as possible (for simplicity I'm making
an exception for the primary stable branch).

CVS release tags

The exact versions of every file that comprise
an official release of the core system would
continue to be tagged in the CVS repository
using the existing convention: DRUPAL-X-Y-2Z.
Similarly, every official release of a contribution
would have a CVS tag that identified it:
DRUPAL-SupMaj-SupMin Minor-Patch.
For example, the 4.7-1.3 release of a
module would be tagged DRUPAL-4-7 1-3.

Release workflow

Given all of this, how would a developer create
a new release?

1. Write code or apply patches, and commit the
changes to the appropriate CVS branch.

2. Once a set of coherent modifications are
complete and a new release should be
identified, the author creates the release tag.

3. They go to their project home page and
create a release node. The developer selects
the CVS tag to use (which determines the
version string), and must provide a description
of the release. At this point, the release node
would be submitted but unpublished.

4. A packaging script runs automatically,
queries the database for all unpublished
release nodes, checks out a copy of the project
directory using the specified release tag,
creates the [project]-[version].tar.gz
package, updates the release node to point to
this file, and publishes the release node.

5. The project node automatically displays the
latest published release nodes for each active
branch, so the new release becomes visible.

Nightly development snapshots

Projects will continue to provide automated
nightly development snapshots to aid end
users that want to help test the next release.
Every branch on a project, including the CVS
TRUNK, can have its own release node. If a
release points to a branch, not a tag, the
packages are identified as “dev” releases and
the version number is computed automatically.

Branch and tag validation

Enforcing these naming conventions for
branches and tags is trivial. The access
control scripts that run on drupal.org can now
tell the difference between branches and tags,
and use regular expressions to validate the
input. With some additional work, the scripts
could also ensure release tags are sequential
on every branch.

What if | don’t want to do any more work?
The degenerate case of this new system,
where the author does no additional work over
their current development habits, is nearly
identical to the system we have now. If they
only branch their code once they port to a new
version of Drupal’s core, they’ll still get
automatically-generated nightly snapshots
from the end of that branch, the versions will
continue to be ambiguous (e.g. 4.7-0.0-dev),
and users will continue to have to keep track of
the dates associated with a given snapshot.

Features we can build on this foundation

1. Email subscriptions and RSS feeds for new
releases from an individual project (optionally
filtered by branch)

2. New page for the version compatibility grid —
a table of project names down the side, where
each column represents an active version of
Drupal core, and each entry in the table
indicates if the module is compatible, links to
releases for stable and development branches.
(http://drupal.org/node/63491)

3. Extensions to release nodes that are
specific to drupal.org (probably taxonomies)

- Database compatibility (MySQL, PGSQL, etc)
- PHP version

4. Adding an optional link on release nodes
that points to the security announcement the
release is the fix for (existence of the link could
be used in various module listings to add some
kind of “security fix” icon)

5. Recent releases block

6. Per-branch CVS access to project source
code for individual users

Questions for the audience

1. Should the primary stable branch be version
X.Y-0.Z20rX.Y-1.27

2. For 5.0.X releases, should the packaging
script automatically write the version string into
the .info file when it makes a . tar.gz file?



