
Drupal 8 configuration
schema cheat sheet
1.2 - Dec 17. 2014.

Configuration schema in Drupal 8 is used to
describe the structure of configuration files. It is then
applied to:

• Typecast configuration to ensure type consistency
(see StorableConfigBase::castValue())

• Automated persistence of configuration entity
properties (see ConfigEntityBase::toArray())

• Automated generation of the configuration
translation user interface (see the core module) 

A simple example
config/install/my_module.settings.yml

Basic schema types
Core provides the following data types. Contributed
modules may define new base types. More are
defined in core.data_types.schema.yml.

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.settings: 
 type: mapping  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: label 
 label: ‘Message text’ 
 langcode: 
 type: string 
 label: ‘Language code’

config/schema/my_module.schema.yml

Settings in config

Used internally

for translation

Scalar types

boolean

integer

float

string

uri

email

List types

mapping: known keys

sequence: unknown keys

Common subtypes

label: short & translatable

text: long & translatable

Subtyping
All of configuration
schema is basically
subtyping from existing
types. The simple
example earlier is
subtyping mapping
with defined keys that
have their own types.

The only difference
between the two list
types is in mappings
you know the keys.

Types route, filter, mail,
etc. are provided for
common complex
Drupal data structures.

Dynamic type with [%parent]
Exact types may not be known ahead of time and
may depend on the data. Schema allows to define
types based on the data as well. Let’s say the type
of message may depend on the type value: either a
list of messages or a simple warning message. Let’s
use ‘multiple’ for the list case and keep ‘warning’ for
the single line message.

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.message.*: 
 type: mapping  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: my_module_message.[%parent.type] 
 langcode: 
 type: string 
 label: ‘Language code’

my_module_message.warning: 
 type: string 
 label: ‘Message’ 
 
my_module_message.multiple: 
 type: sequence 
 label: ‘Messages’ 
 sequence: 
 - type: string 
 label: ‘Message’

config/schema/my_module.schema.yml

config/install/my_module.message.single.yml

type: multiple 
message: 
 - ‘Hello!’ 
 - ‘Hi!’ 
langcode: en

config/install/my_module.message.multiple.yml

Dynamic element

type based on data

Used wildcard so it
applies to a set of
config names.

Chaining is possible as %parent.%parent.type, etc.

Internal types
prefixed with
module name but
avoid conflict with
top level types.

Schema debugging
To debug configuration schemas use the Configuration
Inspector module (http://drupal.org/project/
config_inspector) which helps you find schema
mismatches with active configuration and inspect how
your schema is applied to your configuration.

Schema testing
• All TestBase deriving tests in core now use

$strictConfigSchema = TRUE which results in strict
scheme adherence testing for all configuration saved.
Only opt out of this if you really need to. Your schema
should match your data and pass this test.

• Use SchemaCheckTestTrait in you test to check for
specific config files only.

More documentation
See https://www.drupal.org/node/1905070 for even
more configuration schema documentation and
examples.

Issues?
• For issues with core configuration schemas, tag them

with ‘Configuration schema’ and ‘Configuration
system’ and pick the appropriate module as
component.

• For issues with the configuration schema system itself,
use the ‘configuration system’ component.

Created by Gábor Hojtsy 
https://www.drupal.org/user/4166/contact

Dynamic type with [type]
If the data to vary type by is under the data to be
typed, that is when [type] becomes useful.

message: 
 type: multiple 
 value: 
 - ‘Hello!’ 
 - ‘Hi!’ 
langcode: en

config/install/my_module.message.multiple.yml

message:  
 type: warning 
 value: ’Hello!’ 
langcode: en

config/install/my_module.message.single.yml

messages:  
 ‘single:1’: ’Hello!’ 
 ‘single:2’: ‘Hi!’ 
 ‘multiple:1’: 
 - ‘Good morning!’ 
 - ‘Good night!’ 
langcode: en

config/install/my_module.messages.yml

This is now a list of arbitrary message elements.

my_module_messages: 
 type: mapping 
 mapping: 
 message: 
 type: sequence 
 label: ‘Messages’ 
 sequence: 
 - type: my_module_message.[%key] 
 langcode: 
 type: string 
 label: ‘Language code’ 
 
my_module_message.single:*: 
 type: string 
 label: ‘Message’ 
 
my_module_message.multiple:*: 
 type: sequence 
 label: ‘Messages’ 
 sequence: 
 - type: string 
 label: ‘Message’

config/schema/my_module.schema.yml

Dynamic type with [%key]

my_module_message.*: 
 type: mapping 
 mapping: 
 message: 
 type: my_module_message.[type]  
 […]

my_module_message.warning: 
 type: mapping 
 […]

my_module_message.multiple: 
 type: mapping 
 […]

config/schema/my_module.schema.yml

Arbitrary message list

Type is in the key as
prefix, e.g. ’single:1’

Wildcard to match prefix.

Use the type key
under the message

You may also define a my_module_message_base
base type that includes common keys like ‘type’ and
extend from that with any custom keys per type.

Need to define
type and value
keys as
appropriate.

http://drupal.org/project/config_inspector
https://www.drupal.org/node/1905070
https://www.drupal.org/user/4166/contact
https://www.drupal.org/user/4166/contact
http://drupal.org/project/config_inspector
https://www.drupal.org/node/1905070

