
The Drupal 8 API

The Drupal 8 API

iii

Table of Contents
1. Introduction ... 1
2. Configuration API ... 2

Overview of Configuration (vs. other types of information) .. 2
Deciding how to classify your information .. 2
Simple Configuration vs. Configuration Entities ... 2

Configuration Storage ... 3
Configuration File Format (YAML) ... 3
Configuration File Location for a Site .. 3
Default Configuration for a Module ... 3
Configuration Caching in the Database ... 3

Configuration Schema and Meta-Data .. 4
Rest of Configuration API information ... 4

3. State API .. 5
4. Updating to Drupal 8 .. 6

Updating Drupal 7 Variables to Drupal 8 State System .. 6
5. Appendix: Style Guide Etc. .. 8

Formatting and Style Guide .. 8
Chapters and Sections ... 8
Code .. 8
Drupal Versions ... 8
Literals and Text Formatting .. 9
Comments ... 9

1

Chapter 1. Introduction
This book provides information for Drupal developers on the Drupal API, and is meant to act as a com-
panion to the detailed class and function reference information that you can find on https://api.drupal.org
(the official Drupal API reference site). The information here is of a tutorial and descriptive nature, and
is built from AsciiDoc [http://asciidoc.org] source files that you can find in the "Core Docs" project on
Drupal.org. (In contrast, the function/class reference information on https://api.drupal.org is built from
specially-formatted comments embedded in the Drupal Core files themselves.)

https://api.drupal.org
http://asciidoc.org
http://asciidoc.org
https://api.drupal.org

2

Chapter 2. Configuration API
The configuration API provides a central place for modules to store configuration data. This can be simple
configuration like your site name, or more complex information managed with configuration entities, such
as views and content types.

Overview of Configuration (vs. other types of
information)

In Drupal 8, there are several types of information:

Content Information meant to be displayed on your site: article, basic page, images, files,
etc.

Session Information about individual users' interactions with the site, such as whether
they are logged in. This is really "state" information, but it is not stored the same
way so it’s a separate type here.

State Information of a temporary nature about the current state of your site. Examples:
the time when Cron was last run, whether node access permissions need rebuild-
ing, etc. See Chapter 3, State API for details of how to store this information.

Configuration Information about your site that is not content and is meant to be more permanent,
such as the name of your site, the content types and views you have defined, etc.

Deciding how to classify your information
It is not always clear how to decide whether a piece of information that your module will store should be
classified as content, state, or configuration. Here are some guidelines:

Configuration vs. State If your information would need to be deployed from your develop-
ment server to your live server, it is probably configuration and not
state information.

Configuration vs. Content Think site builder vs. site editor. If a "site editor" role on the site
would want to edit the information, it is probably content. If only a
"site builder" role would want to have the power to edit the infor-
mation, then it is probably configuration. But this is not an absolute
rule.

Configuration vs. Content Think about numbers. If you have a huge number of items, prob-
ably it is content. If you will only ever have a few, probably it is
configuration.

Configuration vs. Content Configuration tends to define "types of things", such as content
types, taxonomy vocabularies, etc. Then each "thing" within the
type is a piece of content: a content node, a taxonomy term, etc.

Simple Configuration vs. Configuration Entities
There are two overall types of configuration information. Simple configuration is used for single, global
settings, such as the name of your site. Configuration entities are used for pieces of information that have
multiple copies; for example, views, content types, etc.

Configuration API

3

Configuration Storage
Configuration information is stored in files and in the database.

Configuration File Format (YAML)
All configuration data is stored on-disk using YAML files.

Here is an example of a configuration file:

some_string: 'Woo kittens!'
some_int: 42
some_bool: true

Configuration can also be nested. Here is an example:

name: thumbnail
label: 'Thumbnail (100x100)'
effects:
 1cfec298-8620-4749-b100-ccb6c4500779:
 id: image_scale
 data:
 width: 100
 height: 100
 upscale: true
 weight: 0
 uuid: 1cfec298-8620-4749-b100-ccb6c4500779

See the section called “Configuration Schema and Meta-Data” for information on the schema for config-
uration files.

Configuration File Location for a Site
By default, when you install Drupal, the installer will create a randomly-named directory inside your public
files directory for configuration. The name will start with config_, followed by a random hash string.
Within this directory, the installer will create an active directory for your current live configuration, and
a staging directory for configuration you are importing.

You can change the locations of your staging and active directories by editing your settings.php file.

Default Configuration for a Module
A module that provides default values for its configuration must put that configuration into YAML files
in its config sub-directory.

If the module only needs basic Simple Configuration settings, all of the default configuration could go
into one modulename.settings.yaml file. For more complex settings, you can separate your configuration
into multiple files. Configuration Entities must each be put into their own YAML files, and they should
be generated by having the module write out its configuration (don’t try writing them by hand).

Configuration Caching in the Database
The canonical storage for configuration for a site is the files in the active configuration directory defined
in settings.php. However, by default, Drupal table. (Of course, you can override Drupal’s default cache
system.)

Configuration API

4

Configuration Schema and Meta-Data
The configuration API includes support for a Kwalify Kwalify [http://www.kuwata-lab.com/kwalify/]-
inspired schema/metadata language for configuration YAML files. Kwalify itself is written in Python and
we needed slight adjustments in the format, so not all of the details of Kwalify are directly applicable,
but it is pretty close.

@todo Put the rest of https://drupal.org/node/1905070 here.

Rest of Configuration API information
@todo Put the rest of the Config API section from https://drupal.org/node/1667894 here. and update the
title and identifier for this section.

http://www.kuwata-lab.com/kwalify/
http://www.kuwata-lab.com/kwalify/
https://drupal.org/node/1905070
https://drupal.org/node/1667894

5

Chapter 3. State API
The State API provides a place for developers to store information about the system’s state. A good exam-
ple of state is the last time cron was run. This is specific to an environment and has no use in deployment.
See the section called “Overview of Configuration (vs. other types of information)” for a more complete
discussion of how state information differs from configuration information.

The State API is a simple system to store this information. Typical usage:

// Get a value:
$val = Drupal::state()->get('key');
// Get multiple key/value pairs:
$pairs = Drupal::state()->getMultiple($keys);
// Get all key/value pairs:
$collection = Drupal::state()->getAll();
// Set a value:
Drupal::state()->set('key','value');
// Set multiple values:
Drupal::state()->setMultiple($keyvalues);
// Set a value if not already set:
Drupal::state()->setIfNotExists('key','value');
// Delete a value:
Drupal::state()->delete('key');

See also:

• the section called “Updating Drupal 7 Variables to Drupal 8 State System”

6

Chapter 4. Updating to Drupal 8
This section contains topics about updating modules from Drupal 7 and other previous versions to Drupal 8.

Updating Drupal 7 Variables to Drupal 8 State
System

Here is a guide for how to update Drupal 7 variables to the State system. Note that some variables should
be updated to the configuration instead — see the section called “Overview of Configuration (vs. other
types of information)” for more information.

Here are the steps to follow:

1. Within your conversion issue work, convert one variable at a time.

• Determine the variable name to convert.

• Grep the entire Drupal code base for the variable name and identify all instances that need to be
updated.

2. Keep state identifiers short and concise. Generally these can probably stay the same as they were in
Drupal 7, unless the old name was incorrect or confusing in some way.

3. The state system is initialized by calling the Drupal::state() function. Interact with the state system using
the get(), set() and delete() functions. The Drupal::state() function returns a state object, so you can do:

$data = Drupal::state()->get('my_state_data');

4. When retrieving data, the state system does not provide a way to provide a default the way the old
variable system did. However, you can provide a default when it returns FALSE, indicating that there
is no data. A concise way to do this is:

$state = Drupal::state()->get('my_state') ?: 'Nothing there';

Note: If the boolean value of FALSE or the integer 0 are valid data for your state variable, then this will
require special handling.

5. Here is a simple example of converting variables to state:

// Drupal 7
variable_set('my_data', 'foo');
$data = variable_get('my_data', 'bar');
variable_del('my_data');

// Drupal 8
Drupal::state()->set('my_data', 'foo');
$data = Drupal::state()->get('my_data') ?: 'bar';
Drupal::state()->delete('my_data');

6. The variable name should be changed so that we can identify the module that creates it. The key should
use the same namespace strategy as the configuration system. So for example:

• cron_last becomes system.cron_last

Updating to Drupal 8

7

• node_cron_last becomes node.cron_last

• menu_masks becomes menu.masks

7. The upgrade path needs to be determined. If the value needs to be maintained through the Drupal 7 to
8 upgrade it should be migrated. For example:

/**
 * Migrates install_task and install_time variables to State API.
 *
 * @ingroup state_upgrade
 */
function system_update_8022() {
 update_variables_to_state(array(
 'install_task' => 'system.install_task',
 'install_time' => 'system.install_time',
));
}

However if the value will be recreated through cache clears or naturally through the upgrade then the
Drupal 7 variable should be deleted. For example:

/**
 * Delete drupal_js_cache_files variable.
 *
 * @ingroup state_upgrade
 */
function system_update_8023() {
 update_variable_del('drupal_js_cache_files');
}

8. Delete states on uninstall, as in /core/modules/comment/comment.install

function comment_uninstall() {
 ...
 // Remove states.
 Drupal::state()->delete('comment.node_comment_statistics_scale');
}

9. Add test coverage to the upgrade tests, as in /core/modules/system/tests/up-
grade/drupal-7.state.system.database.php:

db_merge('variable')
 ->key(array('name' => 'node_cron_comments_scale'))
 ->fields(array('value' => serialize(1.0 / 1000)))
 ->execute();

Check if new values apply, as in /core/modules/system/lib/Drupal/system/Tests/Up-
grade/StateSystemUpgradePathTest.php:

$expected_state['comment.count_scale'] = array(
 'value' => 1.0 / 1000,
 'variable_name' => 'node_cron_comments_scale',
);

8

Chapter 5. Appendix: Style Guide Etc.

Formatting and Style Guide
The documentation in this project is formatted using AsciiDoc [http://asciidoc.org], which is a fairly simple
markdown-style syntax. The AsciiDoc user guide [http://asciidoc.org/userguide.html] explains the markup
syntax in detail. Or, you can use this handy AsciiDoc Cheat Sheet [http://powerman.name/doc/asciidoc].

A few notes on syntax that are specific to Drupal Core documentation follow.

Chapters and Sections

AsciiDoc supports a couple of different syntax options for chapters and sections; we’re using an alternative
that is not covered in all AsciiDoc documentation, but is simpler to use.

Also, every section and chapter should have an identifier on it.

So, it looks like this:

 = Overall Book Title

 [[first_chapter_id]]
 == Chapter Title One

 [[first_section_id]]
 === Section Title Sub 1

You can then make a link to a different chapter or section by putting

 <<the_id>>

into your text.

Each chapter should be in a separate file; sections can be in the same file or separate files. Chapters are
things like "Configuration API" and sections roughly correspond to drupal.org book pages within each
chapter. On api.drupal.org, each section will be displayed on its own page.

Code

To include PHP code, prefix a literal block (which starts with ---- on its own line) with
[source,php]. Other types of source code are also recognized, such as css, javascript, sql,
html, etc. For generic source code, you can omit the [source,php] line. There are examples in most
of the files.

Drupal Versions

This repository will be branched for new versions of Drupal. So, do not specifically use the version number
in your writing, except in the top-level title, and in specific sections about updating from one version
to another. The hope is that when we branch to the next version, we should just be able to delete the
version-specific updating sections, change the main title in one place, and be done.

http://asciidoc.org
http://asciidoc.org
http://asciidoc.org/userguide.html
http://asciidoc.org/userguide.html
http://powerman.name/doc/asciidoc
http://powerman.name/doc/asciidoc

Appendix: Style Guide Etc.

9

Literals and Text Formatting
File names and directories in text should be formatted in italics:

core/modules/system/system.module

Functions, variables, class names, snippets, etc. in text should be formatted in monospace:

+my_function_name()+
+$foo+

Comments
You can put comments about formatting into your AsciiDoc using double slashes, like PHP:

// This is a comment that is only relevant to someone reading
// the AsciiDoc source.

	The Drupal 8 API
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Configuration API
	Overview of Configuration (vs. other types of information)
	Deciding how to classify your information
	Simple Configuration vs. Configuration Entities

	Configuration Storage
	Configuration File Format (YAML)
	Configuration File Location for a Site
	Default Configuration for a Module
	Configuration Caching in the Database

	Configuration Schema and Meta-Data
	Rest of Configuration API information

	Chapter 3. State API
	Chapter 4. Updating to Drupal 8
	Updating Drupal 7 Variables to Drupal 8 State System

	Chapter 5. Appendix: Style Guide Etc.
	Formatting and Style Guide
	Chapters and Sections
	Code
	Drupal Versions
	Literals and Text Formatting
	Comments

